El desarrollo de la química como ciencia hizo necesario dar a cada sustancia desconocida necesario dar a cada sustancia conocida un nombre que pudiera representarse de forma abreviada, pero que al mismo tiempo incluyera información acerca de la composición molecular de las sustancias y de su naturaleza elemental. Los alquimistas habían empleado ya símbolos para representar los elementos y compuestos hasta entonces conocidos. Muchos de estos símbolos y formulas representaban cuerpos celestes, pues, los primeros químicos pensaban que las sustancias materiales estaban íntimamente relacionadas con el cosmos. Dalton fue el primero en utilizar un sistema de signos, desprovisto de misticismo, para los diferentes elementos y con base en estos, para algunos compuestos. Los símbolos modernos para representar los elementos químicos se deben aBerzelius, quien propuso utilizar, en vez de signos arbitrarios, la primera letra del nombre latino del elemento. Cuando varios elementos tuvieran la misma inicial, se representaban añadiendo la segunda letra del nombre. Así, por ejemplo, el carbono, el cobre y el calcio se representan: C, Cu y Ca, respectivamente. Observa que la primera letra se escribe en mayúscula, mientras que la segunda, cuando esta presente, se escribe en minúscula. De la misma manera como estos símbolos representan elementos, las formulas indican la composición molecular de las sustancias, mediante la yuxtaposición de los símbolos de los elementos constituyentes. Para indicar el número de átomos presentes de cada elemento integrante de la molécula, se escribe tal cantidad como un subíndice al lado del correspondiente elemento. Por ejemplo, la fórmula del agua H2O, indica que esta constituida por dos átomos de hidrógeno y uno de oxígeno.
Blog De Quimica
martes, 12 de noviembre de 2013
NOMENCLATURA QUIMICA
La nomenclatura química (del latín nomenclatūra) es un conjunto de reglas o fórmulas que se utilizan para nombrar todos los elementos y los compuestos químicos. Actualmente la IUPAC (Unión Internacional de Química Pura y Aplicada, en inglés International Union of Pure and Applied Chemistry) es la máxima autoridad en materia de nomenclatura química, la cual se encarga de establecer las reglas correspondientes.
La moderna nomenclatura química tiene su origen en el Méthode de nomenclature chimique publicado en 1787 por Louis-Bernard Guyton de Morveau (1737-1816), Antoine Lavoisier (1743-1794), Claude Louis Berthollet (1748-1822) y Antoine-François de Fourcroy (1755-1809).1 Siguiendo propuestas anteriores formuladas por químicos como Bergmann y Macquer, los autores franceses adoptaron como criterio terminológico fundamental la composición química. Los elementos fueron designados con nombres simples (aunque sin ningún criterio común) y únicos, mientras que los nombres de los compuestos químicos fueron establecidos a partir de los nombres de sus elementos constituyentes más una serie de sufijos. Esta terminología se aplicó inicialmente tanto a sustancias del reino mineral como del vegetal y animal, aunque en estos últimos casos planteaba muchos problemas.
El desarrollo de la química orgánica a partir de los años treinta del siglo XIX propició la creación de nuevos términos y formas de nombrar compuestos que fueron discutidos y organizados en el congreso de Ginebra de 1892, del que surgieron muchas de las características de la terminología de la química orgánica. El otro momento decisivo en el desarrollo de la terminología química fue la creación de la IUPAC (International Union of Pure and Applied Chemistry). La sociedad surgió a partir de la Asociación Internacional de Sociedades de Química que se fundó en París en 1911 con representantes de sociedades nacionales de catorce países. De esta asociación surgieron varios grupos de trabajo encargados de estudiar nuevas propuestas de reforma de la nomenclatura química.Tras la interrupción producida por la Primera Guerra Mundial, una nueva asociación volvió a crearse en 1919, cambiando su nombre por el de Unión Internacional de Química Pura y Aplicada (IUPAC). La guerra no sólo supuso la aparición de una nueva organización sino también la salida de las sociedades alemanas, que habían sido uno de los primeros impulsores de estas organizaciones internacionales de química. A pesar de ello, la nueva institución creció rápidamente hasta reunir en 1925 veintiocho organizaciones nacionales de química, entre las que se encontraba la española. Además, figuraban químicos representantes de diversas revistas como Chemical Abstracts estadounidense, el Journal of the Chemical Society , de Gran Bretaña, y el Bulletin Signaletique de la Société Chimique de France. Posteriormente se sumaron los editores de la Gazzeta Chimica italiana, los de la suiza Helvetica Chimica Acta y los del Recueil des Travaux Chimiques de Holanda. Finalmente, en 1930, se produjo la entrada de los representantes de las sociedades alemanas, lo que permitió que se integraran los representantes del Beilstein Handbuch de Alemania, con lo que se completó la representación de las principales revistas y de los dos repertorios de química más importantes del momento. Todos ellos, junto con los representantes de las sociedades químicas, jugarían un papel decisivo en el desarrollo de la terminología química en los años siguientes.
NUMERO DE OXIDACION
Se denomina número de oxidación a la carga que se le asigna a un átomo cuando los electrones de enlace se distribuyen según ciertas reglas un tanto arbitrarias. Las reglas son: Los electrones compartidos por átomos de idéntica electronegatividad se distribuyen en forma equitativa entre ellos. Los electrones compartidos por átomos de diferente electronegatividad se le asignan al más electronegativo. Luego de esta distribución se compara el número de electrones con que ha quedado cada átomo con el número que posee el átomo neutro, y ése es el número de oxidación. Éste se escribe, en general, en la parte superior del símbolo atómico y lleva el signo escrito. Por ejemplo: Vamos a determinar el número de oxidación del Cl en Cl2 y en HCl. Los dos electrones de enlace se reparten uno para cada átomo, ya que por tratarse de átomos del mismo elemento, obviamente tendrán igual valor de electronegatividad. Cada átomo de Cl queda ahora con 7 electrones de valencia, que son los mismo que tiene el átomo neutro, lo que determina que su número de oxidación sea 0. Los dos electrones de enlace se le asignan al Cl por ser el átomo de mayor electronegatividad, quedando así, con 8 electrones de valencia, uno más que los del átomo neutro, por lo que su número de oxidación es –1. El H ha quedado sin su único electrón, y su número de oxidación es +1. De las dos reglas anteriores surge una serie de reglas prácticas que permiten asignar números de oxidación sin necesidad de representar las estructuras de Lewis, las cuales a veces pueden ser complejas o desconocidas.
VALENCIA
La valencia, también conocida como número de valencia, es una medida de la cantidad de enlaces químicosformados por los átomos de un elemento químico. A través del siglo XX, el concepto de valencia ha evolucionado en un amplio rango de aproximaciones para describir el enlace químico, incluyendo la estructura de Lewis (1916), la teoría del enlace de valencia (1927), la teoría de los orbitales moleculares (1928), la teoría de repulsión de pares electrónicos de la capa de valencia (1958) y todos los métodos avanzados de química cuántica.
TIPOS DE VALENCIA
Valencia positiva máxima:
Es el número positivo que refleja la máxima capacidad de combinación de un átomo. Este número coincide con el Grupo de la Tabla Periódica al cual pertenece. Por ejemplo: el Cloro (Cl) es del Grupo VII A en la tabla, por lo que su valencia positiva máxima es 7.
Valencia negativa:
Es el número negativo que refleja la capacidad que tiene un átomo de combinarse con otro pero que obviamente esté actuando con valencia positiva. Este número negativo se puede determinar contando lo que le falta a la valencia positiva máxima para llegar a 8, pero con signo -.
Por ejemplo: a la valencia máxima positiva del átomo de cloro es 7, por lo que le falta un electrón para cumplir el octeto, entonces su valencia negativa será -1
Trabajo, con los avances en la teoría del enlace químico, pero aún es usado ampliamente en estudios elementales donde provee una introducción heurística a la materia.
FUNCION OXIDO
Cuando se hace reaccionar un metal con el oxígeno, se obtiene un óxido:
metal + oxigeno ———› óxido metálico
Na + ———›
sodio + oxigeno ———› óxido de sodio
Nomenclatura
Para formar el nombre del óxido se escribe la palabra "óxido" seguido de la preposición "de" y después el nombre del metal. Si el metal presenta más de dos valencias, se escribe entre paréntesis con número romano la valencia del metal con la que esté actuando
Ejemplo:
Casi todos los elementos forman combinaciones estables con oxigeno y muchos en varios estados de oxidacion. Debido a esta gran variedad las propiedades son muy diversas y las características del enlace varían desde el típico sólido iónico hasta los enlaces covalentes. Por ejemplo son óxidos el óxido nítrico, NO, o el dióxido de nitrogeno, NO2. Los óxidos son muy comunes y variados en la corteza terrestre. También son llamados anhidridos porque son compuestos que han perdido una molecula de agua dentro de sus moléculas. Por ejemplo el anhidrido carbonico:
CO2
H2CO3.
FUNCION HIDROXIDO
Son compuestos ternarios que se caracterizan porque poseen el ion hidróxido o hidroxilo (OH)-1 unido mediante enlace iónico al catión metálico. El ión (OH)-1 queda libre cuando el hidróxido se disuelve en agua. En casos en que el hidróxido es insoluble, el ión hidróxido no queda libre.
Los hidróxidos poseen propiedades básicas, por ello se les llama también bases. Aunque el término base es mucho mas amplia para referirse a un conjunto de sustancias de propiedades características (opuestos a los ácidos), como por ejemplo:
· enrojecen la fenolftaleína
· azulean el papel de tornasol
· neutralizan ácidos
· desnaturalizan proteínas
· al tacto son resbalosas o jabonosas
· poseen sabor caustico o amargo
A los hidróxidos de los metales alcalinos (Li , Na , K , Rb , Cs) se les llama álcalis. Son muy solubles en el agua, tóxicos y venenosos
Obtención General:
Generalmente se produce por reacción química del agua con los óxidos básicos o por la reacción directa de un metal alcalino o alcalino terreo con el agua.
Oxido básico + H2O → hidróxido
Ejemplos:
· CaO (óxido de calcio) + H2O → Ca (OH)2 : hidróxido de calcio
· CuO (óxido cúprico) + H2O → Cu (OH)2 : hidróxido cúprico
· Na2O (óxido de sodio) + H2O → 2 Na OH : hidróxido de sodio
metal (IA ó IIA) + H2O → hidróxido + H2
Ejemplos:
· 2K + H2O → 2 KOH (hidróxido de potasio) + H2
· Ba + 2 H2O → Ba (OH)2 (hidróxido de bario) + H2
La nomenclatura quimica de los hidróxidos se realiza en forma similar que en el caso
FUNCION SAL
Una sal es un compuesto químico formado por cationes (iones con carga positiva) enlazados a aniones (iones con carga negativa). Son el producto típico de una reacción química entre una base y un ácido, donde la base proporciona el catión y el ácido el anión.
La combinación química entre un ácido y un hidróxido (base) o un óxido y un hidronio (ácido) origina una sal más agua, lo que se denomina neutralización.
Obtenciones Generales:
1. Reacción de neutralización
ácido + base → sal + agua
2. Reacción de desplazamiento
‘acido + metal → sal + H2
Nomenclatura: debe nombrarse primero el anión y luego el catión de acuerdo a la nomenclatura de iones que se trató anteriormente, es decir:
Na+1 + Cl-1 → NaCl , cloruro de sodio
Ca+2 + (PO4)-3 → Ca3 (PO4) -2 , fosfato de calcio
Tipos de sales:
I. De acuerdo al tipo de ácido origen son de dos tipos:
1. Sal oxisal, deriva de un ácido oxácido.
H2SO4 (ac. sulfúrico) + NaOH (hidroxido. de sodio) → Na2SO4 (sulfato de sodio) + H2O
H2SO2 (ac. sulfuroso) + Fe → FeSO3(sulfito ferroso) + H2
2. Sal haloidea, deriva de un ácido hidrácido.
H2Cl (ac. clorhídrico) + Ca (OH)2 (hidrox. de calcio) → CaCl2 (cloruro de Ca) + H2O
H2S (ac. sulfhídrico) + Ba → BaS (sulfuro de bario) + H2
Se observa que las oxisales poseen atomo de oxígeno, mientras que las sales haloideas no.
Suscribirse a:
Entradas (Atom)